Determination of wave-induced fluctuations of wall temperature and convection heat transfer coefficient in the heating of a turbulent falling liquid film

نویسنده

  • T. H. LYU
چکیده

This study examines the transient thermal response of a vertical electrically-heated wall during sensible heating of a turbulent wavy film. It is shown how the wall temperature can be decomposed into two components. The first is steady and accounts for the stream-wise increase in the wall and film temperatures, and the second is periodic and corresponds to temperature fluctuations due to the film waviness. By assuming periodicity in the wall temperature fluctuation in response to large tilm waves, the second component is solved numerically using liquid temperature data measured across the film to define the boundary condition at the wall-liquid interface. Results show that, during the period of a large wave, the wall temperature is fairly uniform but the convection heat transfer coefficient undergoes significant fluctuation. The fluctuation amplitude of the latter decreased with increasing film Reynolds number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of turbulent free convection of liquid metal with constant and variable properties in the presence of magnetic field

In this research, turbulent MHD convection of liquid metal with constant and variable properties is investigated numerically. The finite volume method is applied to model the fluid flow and natural convection heat transfer in a square cavity. The fluid flow and heat transfer were simulated and compared for two cases constant and variable properties. It is observed that for the case variable pro...

متن کامل

Turbulent Mixed Convection of a Nanofluid in a Horizontal Circular Tube with Non-Uniform Wall Heat Flux Using a Two-Phase Approach

In this paper, Turbulent mixed convective heat transfer of water and Al2O3 nanofluid has been numerically studied in a horizontal tube under non-uniform heat flux on the upper wall and insulation in the lower wall using mixture model. For the discretization of governing equations, the second-order upstream difference scheme and finite volume method were used. The coupling of pressure and veloci...

متن کامل

Improving Heat Transfer in Falling Film Evaporators in Food Industries

Falling film evaporators, due to their high heat transfer coefficients, low energy loss, rather a low holdup time, and the ability to handle high capacities have broad applications in food industries. Thus, this kind of evaporator is being used in the production of temperature sensitive compounds such as syrups. In this study, through modelling of the falling film evaporator with the use of...

متن کامل

Experimental Investigation of Mixed Convection Heat Transfer in Vertical Tubes by Nanofluid: Effects of Reynolds Number and Fluid Temperature

An experimental investigation was carried out to study mixed convection heat transfer from Al2O3-water nanofluid inside a vertical, W-shaped, copper-tube with uniform wall temperature. The tests covered different ranges of some involved parameters including Reynolds number, temperature and particles volume fraction. The results showed that the rate of heat transfer coefficient improved with Rey...

متن کامل

Towards an Analytical Model for Film Cooling Prediction using Integral Turbulent Boundary layer

The objective of this work is to develop deep theoretical methods that are based on the solution of the integral boundary layer equations for investigating film cooling in liquid rocket engine. The integral model assumes that heat is transferred from hot free stream gas to the liquid film both by convection and radiation. The mass is transferred to the free srteam gas by the well-known blowing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002